P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination Nov-Dec 2021

SESH2011 Differential Equations

Time: 09:00 a.m. To 11:30 a.m.

Maximum Marks: 60

03.12.2021,	Friday
Instructions:	

- The question paper comprises of two sections.
 Section I and II must be attempted in separate answer sheets.
 Make suitable assumptions and draw neat figures wherever required.
 Use of scientific calculator is allowed.

SECTION – I		
	Answer the Following: (Any Six)	
Q-1	Solve $y \log y dx + (x - \log y) dy = 0$.	[05]
Q-2	Solve $\frac{dr}{d\theta} = r \tan \theta - \frac{r^2}{\cos \theta}$.	[05]
Q - 3	Using the method of variation of parameters, solve $(D^2 - 2D + 2)y = e^x \tan x$.	[05]
Q-4	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \sin y$ when $x = 0$ and $z = 0$, when y is an odd multiple of $\frac{\pi}{2}$.	[05]
Q-5	Solve $(D^2 - 2DD' + D'^2)z = \tan(y + x)$.	FO. #7
Q-6	Solve $(y-2DD+D^2)z = \tanh(y+x)$. Solve $(y+z)p + (z+x)q = x+y$.	[05]
Q-7	Solve $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u$ by the method of separation of variables.	[05]
		[05]
Q-8	Find the orthogonal trajectories of the family of semicubical parabolas $ay^2 = x^3$.	[05]
Q-9	Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ with boundary conditions $u(x,0) = 3\sin n\pi x$, $u(0,t) = 0$ and	[05]
	u(1,t) = 0, where $0 < x < 1$, $t > 0$.	
SECTION – II		
0 1	Answer the Following: (Any Six)	
Q-1	Find the Laplace transform of $\{3t^5 - 2t^4 + 4e^{-5t}\}e^{2t}$.	[05]
Q - 2	Evaluate $L(\log(1+\frac{1}{s^2}))$.	[05]
Q-3	Evaluate $L^{-1}\left(\frac{s+7}{s^2+2s+2}\right)$.	[05]
Q - 4	Solve $y'' + 2y'y = 6te^{-1}$, $y(0) = y'(0) = 0$ using Laplace transform.	[05]
Q - 5	Find the Fourier series to represent $f(x) = e^{ax}$ in the interval $-\pi < x < \pi$.	[05]
Q-6	Expand $f(x) = x \sin x$ as a Fourier series in the interval $0 < x < 2\pi$.	[05]
Q - 7	Using Fourier cosine integral representation of an appropriate function, show that	[05]
	$\int_{0}^{\infty} \frac{\cos \omega x}{k^2 + \omega^2} d\omega = \frac{\pi e^{-kx}}{2k}$	
Q - 8	Find the solution of the differential equation $y' - 2y = H(t)e^{-2t}$, $-\infty < t < \infty$ using	[05]
	Fourier transforms, where $H(t) = u_0(t)$ is the unit step function.	-
Q - 9	Find the Fourier series of $f(x) = x + x^2$ in $(-1,1)$.	[05]
